Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study

نویسندگان

  • Wei Zhou
  • Hui Wu
  • Taner Yildirim
چکیده

Rhenium diboride is a recently recognized ultra-incompressible superhard material. Here we report the electronic (e), phonon (p), e-p coupling, and thermal properties of ReB2 from first-principles densityfunctional theory calculations and neutron scattering measurements. Our calculated elastic constants (c11 =641 GPa, c12=159 GPa, c13=128 GPa, c33=1037 GPa, and c44=271 GPa), bulk modulus (B≈350 GPa) and hardness (H≈46 GPa) are in good agreement with the reported experimental data. The calculated phonon density of states agrees very well with our neutron vibrational spectroscopy result. Electronic and phonon analysis indicates that the strong covalent B-B and Re-B bonding is the main reason for the super incompressibility and hardness of ReB2. The thermal expansion coefficients, calculated within the quasiharmonic approximation and measured by neutron powder diffraction, are found to be nearly isotropic in a and c directions and only slightly larger than that of diamond in terms of magnitude. The excellent agreement found between calculations and experimental measurements indicate that first-principles calculations capture the main interactions in this class of superhard materials, and thus can be used to search, predict, and design new materials with desired properties. Disciplines Engineering | Materials Science and Engineering Comments Suggested Citation: Zhou, W., Wu, H. and Yildirim, T. (2007). Electronic, dynamical, and thermal properties of ultraincompressible superhard rhenium diboride: A combined first-principles and neutron scattering study. Physical Review B. 76, 184113. © 2007 The American Physical Society http://dx.doi.org/10.1103/PhysRevB.76.184113 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/mse_papers/201 Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study W. Zhou,1,2,* H. Wu,1,3 and T. Yildirim1,2 1NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA 2Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 3Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA Received 27 August 2007; published 19 November 2007 Rhenium diboride is a recently recognized ultra-incompressible superhard material. Here we report the electronic e , phonon p , e-p coupling, and thermal properties of ReB2 from first-principles densityfunctional theory calculations and neutron scattering measurements. Our calculated elastic constants c11 =641 GPa, c12=159 GPa, c13=128 GPa, c33=1037 GPa, and c44=271 GPa , bulk modulus B 350 GPa and hardness H 46 GPa are in good agreement with the reported experimental data. The calculated phonon density of states agrees very well with our neutron vibrational spectroscopy result. Electronic and phonon analysis indicates that the strong covalent B-B and Re-B bonding is the main reason for the super incompressibility and hardness of ReB2. The thermal expansion coefficients, calculated within the quasiharmonic approximation and measured by neutron powder diffraction, are found to be nearly isotropic in a and c directions and only slightly larger than that of diamond in terms of magnitude. The excellent agreement found between calculations and experimental measurements indicate that first-principles calculations capture the main interactions in this class of superhard materials, and thus can be used to search, predict, and design new materials with desired properties. DOI: 10.1103/PhysRevB.76.184113 PACS number s : 71.20. b, 62.20.Dc, 63.20. e, 65.40. b

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure.

The quest to create superhard materials rarely strays from the use of high-pressure synthetic methods, which typically require gigapascals of applied pressure. We report that rhenium diboride (ReB2), synthesized in bulk quantities via arc-melting under ambient pressure, rivals materials produced with high-pressure methods. Microindentation measurements on ReB2 indicated an average hardness of 4...

متن کامل

Electronic structure and lattice dynamics of the magnetic shape-memory alloy Co2NiGa

In addition to the prototypical Ni-Mn-based Heusler alloys, the Co-Ni-Ga systems have recently been suggested as another prospective materials class for magnetic shape-memory applications. We provide a characterization of the dynamical properties of this material and their relation to the electronic structure within a combined experimental and theoretical approach. This relies on inelastic neut...

متن کامل

Two Novel C3N4 Phases: Structural, Mechanical and Electronic Properties

We systematically studied the physical properties of a novel superhard (t-C₃N₄) and a novel hard (m-C₃N₄) C₃N₄ allotrope. Detailed theoretical studies of the structural properties, elastic properties, density of states, and mechanical properties of these two C₃N₄ phases were carried out using first-principles calculations. The calculated elastic constants and the hardness revealed that t-C₃N₄ i...

متن کامل

Influences of carbon concentration on crystal structures and ideal strengths of B2CxO compounds in the B-C-O system

The search for novel superhard materials with special structures and improved thermal stability and hardness remains considerably experimental and theoretical challenges. Recent reports proposed that higher carbon content in ternary B2CxO compounds, which are isoelectronic with diamond, would lead to increased strength and hardness. This notion was derived from the calculated elastic parameters...

متن کامل

Lattice dynamics and thermodynamics of bcc iron under pressure: First-principles linear response study

We compute the lattice-dynamical and thermal equation of state properties of ferromagnetic bcc iron using the first-principles linear response linear-muffin-tin-orbital method in the generalized-gradient approximation. The calculated phonon dispersion and phonon density of states, both at ambient and high pressures, show good agreement with inelastic neutron scattering data. We find the free en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016